Solutions

BEADS

We represent each swapper i over conveyor p; and p; +1 as a permutation 7, such that 7 (p;) = p; +1, 7 (p;
+1) = p;, and 7 (j) =j for j & { p;, p; +1}. Thus, for this task, the answer to question (K; J) is

75 (7.1 ({7 (K))))

A naive solution that evaluates that permutation for each question runs in time O(MQ), where M is the
number of swappers and Q is the number of questions asked.

We can speed that computation up by some preprocessing. For simplicity, we assume that M is some
power of 2. Let permutation 7;; be the composition of 7, 7.4, ..., 7, i.e.,

Tj= 7 Tj1®... O 75

For each level /=0, 1 ... logM, we precompute partial composition s .1)24for i = 0, 1,..M/2". There are M
+ M/2 + M/4 + ... < 2M such partial compositions. Note that with these partial compositions at hand, one
can answer the query by evaluating O(logM) partial compositions. For example, to compute 7 13, we need

only to compute mg® 11, ® 7i313.

Another key issue is how to represent each precomputed 7; . Note that if we store each partial
composition directly as a complete function, we need Q2(N) space for one of them and this leads to 2 (NM)
memory requirement, which is too much. We can reduce the memory requirement by only store the value
7; (a) for only a such that 7; (a) 6= a. We can store them as a sorted list, and it takes O(logN) time to
evaluate one partial composition. As such, Q questions can be answered in time O(QlogM logN). Since there
are M swappers and at most logM levels, the memory requirement reduces to O(M logM). Any solution
that meets this time and space bounds receives full score.

DNA

First, we ignore the templates and only count the number of sequences of form-k.

Let A[i][k][a]denote the number of sequences of form-k of length i beginning with a. Note that if we

require that the second character S comes before a, possible sequences of form-k are those constructed by
concatenating o with form-(k-1) sequences beginning with £. On the other hand, we require that fis o or
comes after o, we can concatenating a with any form-k sequence.

Thus, we have the following recurrence

Akl = Y. Ali=1TIKIB1+ Y., Ali =11k —11[A]

This idea can be extended to count the number of sequences that also match the templates. Table A can
be computed in time O(MK).

Given A, we can trace back the computation of A to find the required R-th gene sequence.

Roads

We first note one structural property that allows us to use greedy approach to solve this task. Given a
graph G = (V, E), where V is the set of villages, and E is the set of roads. We color each edge e blue if it is a



cobblestone road and red otherwise. This task wants to find a spanning tree of G that contains exactly k
blue edges.

Consider any spanning tree T. Note that if we consider subgraph of T that contains only blue edges, we get
a forest. It is known that for any two forest F1 and F2, such that F1 has k1 edges, F2 has k2 edges, and k2 >
k1, there exists some edge e € F2 such that F1 U {e} remains a forest. (See, e.g., Cormen et al., Chapter 16
on matroids.) This implies that to find spanning tree with k blue edges, we can never make a mistake by
taking in wrong blue edges.

With that fact, there are many ways to find a required spanning tree. We present here one solution.

The algorithm has two rounds. First, we try to find a set of “required” blue edges, i.e., these edges must be
in the tree to ensure connectivity. We start by finding all connected components of a subgraph containing
only red edges. We then greedily add blue edges joining different components so that the graph is
connected. These blue edges added in this round form the starting blue edge set B. Clearly if we need more
than k edges to connect the graph, we can be sure that there is no spanning tree with the required
property.

On the second round, we start with a forest F with only edges in B. We then greedily add blue edges to F
while maintaining that the resulting graph F remains a forest. We keep adding until we get k blue edges in
F. After that, we complete the algorithm by using red edges to join different connected components in F.

If we fail in any steps, it means that no solution exists.

The main data structure that we use in both rounds is the union-find data structure for maintaining disjoint
sets.

In the first round, to find connected components of red edges, we just union every pair of components
containing end points of red edges. Before adding blue edges e, we call two find subroutines to check if e
joins two different components. If that's the case, we union both components. In the second round we may
proceed like the second step of the first round.

To analysis the running time, for each round, we call at most n unions and O(m) finds. Using a set of tree
with union-by-rank heuristics ensures that each operation (union or find) runs in time Oflog n). Thus, the
algorithm runs in time O((n + m) log n).



